

Welcome to django-cryptography

A set of primitives for easily encrypting data in Django, wrapping
the Python Cryptography [https://cryptography.io/] library. Also provided is a drop in
replacement for Django’s own cryptographic primitives, using
Cryptography [https://cryptography.io/] as the backend provider.

Why another encryption library for Django?

The motivation for making django-cryptography [https://github.com/georgemarshall/django-cryptography/] was from the
general frustration of existing solutions. Libraries such as
django-cryptographic-fields [https://github.com/foundertherapy/django-cryptographic-fields/] and django-crypto-fields [https://github.com/erikvw/django-crypto-fields] do not allow
a way to easily work with custom fields, being limited to their own
provided subset. As well as many others lacking Python 3 and modern
Django support.

	Installation
	Requirements

	Settings
	CRYPTOGRAPHY_BACKEND

	CRYPTOGRAPHY_DIGEST

	CRYPTOGRAPHY_KEY

	CRYPTOGRAPHY_SALT

	Drop-in Replacements

	Fields
	Constants

	Helpers

	Migrating existing data

	Cryptography by example

	Releases
	1.0 - 2020-02-09

	0.4 - 2020-01-28

	0.3 - 2017-12-19

	0.2 - 2016-12-06

	0.1 - 2016-05-21

Indices and tables

	Index

	Module Index

	Search Page

Installation

Requirements

	Python [https://www.python.org/] (3.5, 3.6, 3.7, 3.8)

	Cryptography [https://cryptography.io/] (2.0+)

	Django [https://www.djangoproject.com/] (1.11, 2.2, 3.0)

pip install django-cryptography

Settings

CRYPTOGRAPHY_BACKEND

Default: cryptography.hazmat.backends.default_backend() [https://cryptography.io/en/stable/hazmat/backends/#cryptography.hazmat.backends.default_backend]

CRYPTOGRAPHY_DIGEST

Default: cryptography.hazmat.primitives.hashes.SHA256 [https://cryptography.io/en/stable/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.SHA256]

The digest algorithm to use for signing and key generation.

CRYPTOGRAPHY_KEY

Default: None [https://docs.python.org/3/library/constants.html#None]

When value is None [https://docs.python.org/3/library/constants.html#None] a key will be derived from
SECRET_KEY. Otherwise the value will be used for the key.

CRYPTOGRAPHY_SALT

Default: 'django-cryptography'

Drop-in Replacements

SIGNING_BACKEND

The default can be replaced with a a Cryptography [https://cryptography.io/] based version.

SIGNING_BACKEND = 'django_cryptography.core.signing.TimestampSigner'

Fields

	
django_cryptography.fields.encrypt(base_field, key=None, ttl=None)

	A decorator for creating encrypted model fields.

	Parameters

	
	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – This is an optional argument.

Allows for specifying an instance specific encryption key.

	ttl (int [https://docs.python.org/3/library/functions.html#int]) – This is an optional argument.

The amount of time in seconds that a value can be stored for. If the
time to live of the data has passed, it will become unreadable.
The expired value will return an Expired object.

	Return type

	models.Field[EncryptedMixin, T]

	
class django_cryptography.fields.PickledField(*args, **kwargs)

	A field for storing pickled objects

	
deconstruct()

	Return enough information to recreate the field as a 4-tuple:

	The name of the field on the model, if contribute_to_class() has
been run.

	The import path of the field, including the class:e.g.
django.db.models.IntegerField This should be the most portable
version, so less specific may be better.

	A list of positional arguments.

	A dict of keyword arguments.

Note that the positional or keyword arguments must contain values of
the following types (including inner values of collection types):

	None, bool, str, int, float, complex, set, frozenset, list, tuple,
dict

	UUID

	datetime.datetime (naive), datetime.date

	top-level classes, top-level functions - will be referenced by their
full import path

	Storage instances - these have their own deconstruct() method

This is because the values here must be serialized into a text format
(possibly new Python code, possibly JSON) and these are the only types
with encoding handlers defined.

There’s no need to return the exact way the field was instantiated this
time, just ensure that the resulting field is the same - prefer keyword
arguments over positional ones, and omit parameters with their default
values.

	
get_db_prep_value(value, connection, prepared=False)

	Return field’s value prepared for interacting with the database backend.

Used by the default implementations of get_db_prep_save().

	
get_default()

	Return the default value for this field.

	
to_python(value)

	Convert the input value into the expected Python data type, raising
django.core.exceptions.ValidationError if the data can’t be converted.
Return the converted value. Subclasses should override this.

	
value_to_string(obj)

	Pickled data is serialized as base64

Constants

	
django_cryptography.fields.Expired = <object object>

	Represents an expired encryption value.

Helpers

	
django_cryptography.fields.get_encrypted_field(base_class)

	A get or create method for encrypted fields, we cache the field in
the module to avoid recreation. This also allows us to always return
the same class reference for a field.

	Return type

	models.Field[EncryptedMixin, T]

	
class django_cryptography.fields.EncryptedMixin(*args, **kwargs)

	A field mixin storing encrypted data

	Parameters

	
	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – This is an optional argument.

Allows for specifying an instance specific encryption key.

	ttl (int [https://docs.python.org/3/library/functions.html#int]) – This is an optional argument.

The amount of time in seconds that a value can be stored for. If the
time to live of the data has passed, it will become unreadable.
The expired value will return an Expired object.

	
get_db_prep_save(value, connection)

	Return field’s value prepared for saving into a database.

Migrating existing data

See also

If you are unfamiliar with migrations in Django, please consult
the Django Migrations [https://docs.djangoproject.com/en/stable/topics/migrations/] documentation.

To migrate an unencrypted database field to an encrypted field the
following steps must be followed. Each step is labeled with its
Django migration type of schema or data.

	Rename existing field using a prefix such as old_ (schema)

	Add new encrypted field with name of the original field (schema)

	Copy data from the old field into the new field (data)

	Remove the old field (schema)

The steps are illustrated bellow for the following model:

class EncryptedCharModel(models.Model):
 field = encrypt(models.CharField(max_length=15))

Create the initial migration for the EncryptedCharModel.

class Migration(migrations.Migration):

 initial = True

 dependencies = []

 operations = [
 migrations.CreateModel(
 name='EncryptedCharModel',
 fields=[
 ('id', models.AutoField(
 auto_created=True,
 primary_key=True,
 serialize=False,
 verbose_name='ID')),
 ('field', models.CharField(max_length=15)),
],
),
]

Rename the old field by pre-fixing as old_field from field

class Migration(migrations.Migration):

 dependencies = [
 ('fields', '0001_initial'),
]

 operations = [
 migrations.RenameField(
 model_name='encryptedcharmodel',
 old_name='field',
 new_name='old_field',
),
]

Add the new encrypted field using the original name from our field.

class Migration(migrations.Migration):

 dependencies = [
 ('fields', '0002_rename_fields'),
]

 operations = [
 migrations.AddField(
 model_name='encryptedcharmodel',
 name='field',
 field=django_cryptography.fields.encrypt(
 models.CharField(default=None, max_length=15)),
 preserve_default=False,
),
]

Copy the data from the old field into the new field using the ORM.
Providing forwards and reverse methods will allow restoring the field
to its unencrypted form.

def forwards_encrypted_char(apps, schema_editor):
 EncryptedCharModel = apps.get_model("fields", "EncryptedCharModel")

 for row in EncryptedCharModel.objects.all():
 row.field = row.old_field
 row.save(update_fields=["field"])

def reverse_encrypted_char(apps, schema_editor):
 EncryptedCharModel = apps.get_model("fields", "EncryptedCharModel")

 for row in EncryptedCharModel.objects.all():
 row.old_field = row.field
 row.save(update_fields=["old_field"])

class Migration(migrations.Migration):

 dependencies = [
 ("fields", "0003_add_encrypted_fields"),
]

 operations = [
 migrations.RunPython(forwards_encrypted_char, reverse_encrypted_char),
]

Delete the old field now that the data has been copied into the new field

class Migration(migrations.Migration):

 dependencies = [
 ('fields', '0004_migrate_data'),
]

 operations = [
 migrations.RemoveField(
 model_name='encryptedcharmodel',
 name='old_field',
),
]

Cryptography by example

Using symmetrical encryption to store sensitive data in the database.
Wrap the desired model field with
encrypt() to easily protect its
contents.

from django.db import models

from django_cryptography.fields import encrypt

class MyModel(models.Model):
 name = models.CharField(max_length=50)
 sensitive_data = encrypt(models.CharField(max_length=50))

The data will now be automatically encrypted when saved to the
database. encrypt() uses an
encryption that allows for bi-directional data retrieval.

Releases

1.0 - 2020-02-09

	Added support Django 3.0

	Dropped Django 2.1 support

	Dropped Python 2.7 support

	Removed legacy support code

0.4 - 2020-01-28

	Dropped Django 1.8 and 2.0 support

	Fixed Django 3.0 deprecation warning

	Fixed migration test cases

0.3 - 2017-12-19

	Fixed issue with Django migration generation

	Added initial support for Django 2.0

	Dropped Python 3.3 support

0.2 - 2016-12-06

	Refactored EncryptedField into
encrypt() decorator.

0.1 - 2016-05-21

	Initial release

Index

 D
 | E
 | G
 | P
 | T
 | V

D

 	
 	deconstruct() (django_cryptography.fields.PickledField method)

E

 	
 	encrypt() (in module django_cryptography.fields)

 	
 	EncryptedMixin (class in django_cryptography.fields)

 	Expired (in module django_cryptography.fields)

G

 	
 	get_db_prep_save() (django_cryptography.fields.EncryptedMixin method)

 	get_db_prep_value() (django_cryptography.fields.PickledField method)

 	
 	get_default() (django_cryptography.fields.PickledField method)

 	get_encrypted_field() (in module django_cryptography.fields)

P

 	
 	PickledField (class in django_cryptography.fields)

T

 	
 	to_python() (django_cryptography.fields.PickledField method)

V

 	
 	value_to_string() (django_cryptography.fields.PickledField method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-cryptography

 		
 Installation

 		
 Requirements

 		
 Settings

 		
 CRYPTOGRAPHY_BACKEND

 		
 CRYPTOGRAPHY_DIGEST

 		
 CRYPTOGRAPHY_KEY

 		
 CRYPTOGRAPHY_SALT

 		
 Drop-in Replacements

 		
 SIGNING_BACKEND

 		
 Fields

 		
 Constants

 		
 Helpers

 		
 Migrating existing data

 		
 Cryptography by example

 		
 Releases

 		
 1.0 - 2020-02-09

 		
 0.4 - 2020-01-28

 		
 0.3 - 2017-12-19

 		
 0.2 - 2016-12-06

 		
 0.1 - 2016-05-21

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

